Your conditions: Yuan-Hao Yang
  • Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing ($\chi^{(2)}$ and $\chi^{(3)}$) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the $\chi^{(3)}$ has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process ($\chi^{(4)}$) is synthesized for the first time, by incorporating $\chi^{(2)}$ and $\chi^{(3)}$ processes in a single microcavity. The coherence of the synthetic $\chi^{(4)}$ is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over $500$ times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

  • Nonlinear optical radiation of a lithium niobate microcavity

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The nonlinear optical radiation of an integrated lithium niobate microcavity is demonstrated, which has been neglected in previous studies of nonlinear photonic devices. We find that the nonlinear coupling between confined optical modes on the chip and continuum modes in free space can be greatly enhanced on the platform of integrated microcavity, with feasible relaxation of the phase-matching condition. With an infrared pump laser, we observe the vertical radiation of second-harmonic wave at the visible band, which indicates a robust phase-matching-free chip-to-free-space frequency converter and also unveils an extra energy dissipation channel for integrated devices. Such an unexpected coherent nonlinear interaction between the free-space beam and the confined mode is also validated by the different frequency generation. Furthermore, based on the phase-matching-free nature of the nonlinear radiation, we build an integrated atomic gas sensor to characterize Rb isotopes with a single telecom laser. The unveiled mechanism of nonlinear optical radiation is universal for all dielectric photonic integrated devices, and provides a simple and robust chip-to-free-space as well as visible-to-telecom interface.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China